1.0 Students demonstrate knowledge of both the formal definition and the graphical interpretation of limit of values of functions. This knowledge includes one-sided limits, infinite limits, and limits at infinity. Students know the definition of convergence and divergence of a function as the domain variable approaches either a number or infinity:
1.1 Students prove and use theorems evaluating the limits of sums, products, quotients, and composition of functions.
1.2 Students use graphical calculators to verify and estimate limits.
1.3 Students prove and use special limits, such as the limits of (sin(x))/x and (1-cos(x))/x as x tends to 0.
2.0 Students demonstrate knowledge of both the formal definition and the graphical interpretation of continuity of a function.
3.0 Students demonstrate an understanding and the application of the intermediate value theorem and the extreme value theorem.
4.0 Students demonstrate an understanding of the formal definition of the derivative of a function at a point and the notion of differentiability:
4.1 Students demonstrate an understanding of the derivative of a function as the slope of the tangent line to the graph of the function.
4.2 Students demonstrate an understanding of the interpretation of the derivative as an instantaneous rate of change. Students can use derivatives to solve a variety of problems from physics, chemistry, economics, and so forth that involve the rate of change of a function.
4.3 Students understand the relation between differentiability and continuity.
4.4 Students derive derivative formulas and use them to find the derivatives of algebraic, trigonometric, inverse trigonometric, exponential, and logarithmic functions.
5.0 Students know the chain rule and its proof and applications to the calculation of the derivative of a variety of composite functions.
6.0 Students find the derivatives of parametrically defined functions and use implicit differentiation in a wide variety of problems in physics, chemistry, economics, and so forth.
7.0 Students compute derivatives of higher orders.
8.0 Students know and can apply Rolle's theorem, the mean value theorem, and L'Hôpital's rule.
9.0 Students use differentiation to sketch, by hand, graphs of functions. They can identify maxima, minima, inflection points, and intervals in which the function is increasing and decreasing.
10.0 Students know Newton's method for approximating the zeros of a function.
11.0 Students use differentiation to solve optimization (maximum-minimum problems) in a variety of pure and applied contexts.
12.0 Students use differentiation to solve related rate problems in a variety of pure and applied contexts.